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1. Background 

a. Motivation 

Satellite remote sensing in the thermal infrared can provide spatially contiguous maps of surface 

temperatures across wide areas, though these are constrained by the tradeoff between temporal resolution 

(the time interval between repeat observations), and spatial resolution. While several Earth imaging 

satellites can provide thermal infrared observations at moderate spatial resolutions (70 – 100 m 

ECOSTRESS, ASTER, Landsat TIRS; 750 – 1000 m VIIRS & MODIS) these have repeat observation 

intervals of 3-16 days for the higher resolution imagery, and at most four times daily for the lower 

resolution imagery. Only geostationary satellite imagers such as the new generation of Geostationary 

Operational Environmental Satellite (GOES) Advanced Baseline Imagers (ABI) can currently provide 

observations at sub-hourly high temporal resolutions, albeit at coarser spatial resolutions (≥2000 m) 

(Schmit et al., 2017).  

Surface temperature observations of mountain snow environments can serve as a model evaluation tool 

for understanding the complex surface energy balance processes that drive snowmelt magnitude and 

timing (Lapo et al., 2015). This is especially important for diurnal processes like snow melt-freeze cycles 

(Niu et al., 2011) and snow grain metamorphism which in turn drive feedbacks in the surface energy 

balance through changes in emissivity and albedo (Warren, 1982; Flanner and Zender, 2006; Warren, 

2019). Surface temperature controls upward longwave radiation (Marks and Dozier, 1992), serves as the 

lower boundary layer for land-atmosphere energy exchanges (Raleigh et al., 2013), and itself responds 

quickly to changes in the net radiative, turbulent, and conductive heat fluxes.  

High temporal resolution observations of surface temperatures in mountains are needed to detect and 

correct biases in land surface models or their forcing data over snow-dominated basins in order to better 

simulate these surface temperatures (Lapo et al., 2015; Pepin et al., 2016; Xiang et al., 2017, Zink et al., 

2018), near-surface diurnal air temperature ranges (Shamir & Georgakakos, 2014; Massey et al., 2016) 

and potentially for observing temperature lapse rates that vary in space and time (Lundquist & Cayan, 

2007; Minder et al., 2010; Mizukami et al., 2014).  

High spatial resolution observations of surface temperatures in mountains are needed to capture the 

spatial variations of the surface energy balance, which together with heterogeneous snow distribution 

exhibits control on snowmelt timing (Lundquist & Dettinger, 2005; Clark et al., 2011). Remote sensing 

imagery of mountain snow environments are subject to significant mixed pixel effects (Selkowitz et al., 

2014), where each thermal infrared pixel blurs together the temperatures of sub-pixel scale surfaces 

(Gillespie et al., 1998). Surface temperature observations around the ~100 m hillslope scale will be 

important to observe temperature gradients with elevation, slope, aspect, vegetation cover, and 

topographic shading within individual watersheds, as these can have significant control on the snow 

surface energy balance (Elder et al 1998; Hock, 2003; Sicart et al., 2006; Anderson et al., 2014; Webster 

et al., 2016). 

b. Objectives and dissertation outline 

To answer our overarching question of: “How does the surface energy balance, as measured by changes 

in snow-surface temperature, vary across mountain snow environments at the hillslope scale and over 

seasonal to diurnal time scales?” this work will leverage geostationary and low Earth orbiting satellite 

imagery along with methods to extract sub-pixel temperature information to create high spatiotemporal 

resolution surface temperature maps for mountain study regions within the continental US. In this process 

we will address the following points in three chapters: 
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• Determine how the off-nadir views and coarse spatial resolutions of GOES-16 ABI bias surface 

temperature measurements over mountain terrain and how these biases change in space and over 

time. 

• Apply a spectral separation method with GOES-16 and -17 ABI imagery to retrieve sub-pixel 

snow and vegetation temperatures, and evaluate how these observations represent the true 

temporal variability of surface temperatures from seasonal to diurnal time scales. 

• Test methods of spatially downscaling GOES ABI imagery, in combination with low Earth 

orbiting satellite imagery and land surface features, to observe how mountain surface 

temperatures vary at both high spatial and temporal resolutions. 

In Chapter 1 we evaluate off-nadir GOES-16 ABI thermal infrared imagery in comparison with 

coincident nadir-looking, moderate spatial resolution MODIS (1 km) and ASTER (90 m) thermal infrared 

imagery over three snow seasons in the central Sierra Nevada of California. We investigate: how GOES 

ABI surface temperature observations are biased due their view angle, the parallax effect, and large pixel 

sizes; how these biases vary across space in relation to terrain properties and forest cover; and how these 

biases vary over time in relation to changing snow cover. 

In Chapter 2 we will assess how high temporal resolution GOES-16 and -17 ABI surface temperatures 

represent seasonal and diurnal temperature patterns. We will apply a spectral separation method, 

previously demonstrated with MODIS observations (Dozier 1981; Lundquist et al. 2018), to GOES ABI 

imagery to estimate separate snow and forest surface temperatures at 5-minute temporal resolution. These 

estimates will be compared against ground-based observations from Gaylor Pit and CUES 

(CRREL/UCSB Energy Site; Bair et al., 2015) in the Sierra Nevada of California, and from the NASA 

SnowEx 2020 campaign at Grand Mesa, Colorado. 

In Chapter 3 we will test three methods of spatially downscaling GOES ABI imagery to the hillslope 

(~100 m) scale over the SnowEx 2020 Grand Mesa, Colorado study site. The first method (Kustas et al., 

2003) relies on empirical relationships between GOES ABI imagery (visible through infrared), indices 

such as NDVI, and land surface properties such as terrain and fractional vegetation as explored in Chapter 

1. The second is a “spatio-temporal fusion” method (Quan et al., 2018; Desai et al., 2021) that combines 

geostationary and low Earth orbiting satellite imagery to create empirical relationships between these 

observations for downscaling GOES ABI imagery. The third method combines either prior method with 

spectral separation from Chapter 2, downscaling surface temperature maps of snow and forest 

temperatures separately. 

2. Chapter I: Evaluating GOES-16 ABI thermal infrared observation biases over the central Sierra 

Nevada of California 

Co-authors: Jessica D. Lundquist 

Status: Paper in preparation for submission to Remote Sensing of Environment (December 2021) 

Abstract: Thermal infrared imagery from the latest generation of NOAA’s Geostationary Operational 

Environmental Satellites (GOES) presents an opportunity to observe mountain surface temperatures over 

the full diurnal cycle, to better understand the surface energy balance, and in turn water fluxes through 

evapotranspiration, the timing and magnitude of snowmelt, or near-surface air temperatures. However, 

imagery from the GOES Advanced Baseline Imager (ABI) instrument are subject to off-nadir view 

angles, and coarse resolution pixels (≥2 km) that blur together the different surface temperatures of 

heterogeneous mountain landscapes such as snow and forests. We investigate how GOES-16 ABI thermal 
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infrared brightness temperatures are biased with respect to 90 m spatial resolution ASTER and 1 km 

spatial resolution MODIS imagery, and how these biases change over space and time for a study region in 

the central Sierra Nevada of California for the 2017-2020 snow seasons. We demonstrate the necessity of 

orthorectifying ABI imagery of mountain terrain to correct for the parallax effect in off-nadir imagery, 

which reduced the mean and standard deviation of temperature biases in this study by 0.6 and 1.5 °C 

respectively. How these biases vary across space are investigated with elevation, slope, aspect, and 

fractional vegetated area, while variations over time are investigated with changes in fractional snow 

cover. Understanding the controls on these biases will aid interpretation of the full high temporal 

resolution (5-minute) timeseries of ABI imagery for observing the diurnal cycles of mountain surface 

temperatures. This work provides a first look at using the latest GOES satellites for observing surface 

temperatures of forested mountain environments with seasonal snow. 

 
Figure 1. a) ASTER thermal infrared imagery used to evaluate the spatial distribution of biases in 

GOES-16 ABI thermal infrared imagery b) before, and c) after orthorectifying to correct for terrain 

parallax. 
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Figure 2. Mean and standard deviation of differences between GOES-16 ABI and ASTER thermal 

infrared brightness temperatures over the course of the snow season is compared a) before (○), and b) 

after (●) orthorectifying the ABI images. Results are presented alongside the mean bias between nadir-

pointing MODIS and ASTER thermal infrared brightness temperatures (×). 

 

3. Chapter II: Spectral separation of snow and forest temperatures from high temporal resolution GOES-

16 and -17 ABI observations 

Co-authors: Edward H. Bair*, Jessica D. Lundquist 

* Earth Research Institute, University of California, Santa Barbara, CA, USA 

Status: Work in progress; paper to be submitted by Spring 2022 

a. High temporal resolution GOES ABI and ground validation data 

Orthorectified GOES-16 and -17 ABI thermal infrared images at high temporal (5-minute) resolution 

from the 2017-2020 snow seasons will be compared against timeseries of ground-based observations at: 

Gaylor Pit within the upper Tuolumne River Basin (Figure 3a), the CUES study site at Mammoth 

Mountain (Figure 3b), both in California’s Sierra Nevada, and the Grand Mesa study site from the 

SnowEx 2020 field campaign in Colorado (Figure 3c). How the coarse spatial resolution ABI images 

represent the diurnal temperature cycle and range, and how that varies over the course of the snow season 

at the three different sites will be investigated. 
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Figure 3. Examples of the high temporal resolution GOES ABI surface brightness temperature and 

ground-based surface temperature observations from February 2020 at a) Gaylor Pit and b) CUES in 

the Sierra Nevada of California, and at c) Grand Mesa in Colorado (which also shows GOES ABI 

midwave infrared, 3.9 μm, bands in dotted lines). (CUES photo from Bair et al., 2015) 

 

b. Spectral separation of forest and snow temperatures with GOES ABI imagery 

A spectral separation method for estimating sub-pixel snow and vegetation temperatures, previously 

applied with MODIS imagery (Lundquist et al., 2018), will be tested with these high temporal resolution 

GOES ABI observations to determine the method’s efficacy at each of the three study sites with their 

differing topography, forest cover, climatology, and snow types. This method (Dozier, 1981) uses 
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observations of the radiance emitted in midwave and longwave infrared bands (Figure 3c) to solve for 

sub-pixel temperatures, modeling each pixel as a linear combination of these sub-pixel temperatures 

weighted by their fractional areas (Figure 4). We will investigate which combination of bands provides 

sub-pixel snow and forest temperatures that match best with in situ observations at each site (ABI 

midwave IR band 7 (3.9 μm), in combination with longwave bands 13 (10.3 μm), 14 (11.2 μm), or 15 

(12.3 μm)).  

 

 
Figure 4. Conceptual flow-chart illustrating the spectral separation workflow with a) input midwave 

and longwave infrared spectral radiance from GOES ABI, b) the system of equations to be solved for 

each sub-pixel surface temperature over time, and c) the resulting sub-pixel temperatures for snow and 

forest/vegetation. (Equations and parts of figure adapted from Lundquist et al., 2018) 

 

4. Chapter III: Downscaling GOES ABI observations for high spatio-temporal surface temperature maps 

during the SnowEx 2020 field campaign 

Co-authors: C. Chris Chickadel*, Jessica D. Lundquist 
* Applied Physics Laboratory, University of Washington, Seattle, WA, USA 

Status: Ideation 

a. Validation data from SnowEx 2020 

In Chapter 3 we will test three methods of spatially downscaling GOES ABI imagery to the hillslope 

(~100 m) scale over the SnowEx 2020 Grand Mesa, Colorado study site. During the SnowEx 2020 field 

campaign, in addition to ground validation temperature data (Figure 3c), ~5m spatial resolution airborne 

infrared imagery was collected coincident with GOES ABI, ASTER, MODIS, and ECOSTRESS 

observations on two days (Figure 5). These very high spatial resolution surface temperature maps, along 

with the timeseries of point temperature measurements, will serve as our ground truth for testing three 

methods of downscaling GOES ABI thermal infrared imagery. 



7 
 

 
Figure 5. a) Mosaic of airborne thermal infrared imagery collected over Grand Mesa, Colorado on 

February 11, 2020 as part of the SnowEx 2020 field campaign. b) Conceptual diagram of the airborne 

and satellite thermal infrared imagery collected simultaneously during SnowEx 2020. 

 

b. Summary of potential downscaling methods 

Method 1: We will first test a downscaling method that requires only the high temporal resolution GOES 

ABI thermal infrared observations. We will test downscaling ABI images using empirical relationships 

between the thermal infrared, finer resolution VSWIR observations from GOES ABI, indices derived 

from these VSWIR images (e.g. NDVI), or other land surface properties (such as elevation, slope, aspect, 

fractional vegetation, or snow cover investigated in Chapter 1). These empirical relationships for 

downscaling thermal infrared imagery have been modeled using multilinear regressions (Kustas et al., 

2003; Inamdar et al., 2008; Weng et al., 2014), random forest regressions (Walters et al., 2013), support 

vector machines (Keramitsoglou et al., 2013), or principle component analysis (Zakšek et al., 2012). We 

will investigate which, if any, empirical relationships allow us to downscale GOES ABI imagery to the 

~100 m spatial scale, as well as the functional form of those relationships.  

 

Method 2: This “spatio-temporal fusion” downscaling method uses empirical relationships between 

coincident surface temperature observations from two or more satellites at different spatial and temporal 

scales. We will use thermal infrared observations from ECOSTRESS, and/or ASTER (Figure 6a), to 

provide the finer “hillslope” (~100 m) scale spatial patterns of surface temperatures at 3-16 day repeat 

intervals, to downscale GOES ABI thermal infrared imagery (Figure 6c). The inclusion of moderate 

spatial resolution imagery (1000 m) from MODIS Aqua and Terra will also be tested (Figure 6b). We will 

also test how frequent these empirical downscaling models needs updating, especially during the late 

snow season as the fractional snow covered area decreases. These downscaling methods have been 

demonstrated over semi-arid vegetation and mountains (Zhu et al., 2010; Yang et al. 2016; Wu et al. 



8 
 

2015), and flat agricultural or forest regions (Quan et al., 2018; Desai et al., 2021), but not yet over 

mountain forests and snow.  

 

 
Figure 6. Conceptual diagram of a spatio-temporal fusion model using three resolutions of satellite 

observations (a, b, and c) at four steps in time (0-3). The resulting downscaled imagery fills the 

temporal and spatial resolution gaps outlined in red. (Thermal infrared image shown for illustrative 

purposes is from ECOSTRESS over Lake Tahoe, California)  

 

Method 3: The third method would apply one of the prior methods to snow and forest temperature maps 

derived through spectral separation. We will first use GOES ABI midwave and longwave observations to 

spectrally separate snow and forest temperatures, but rather than for single pixels as in Chapter 2, for the 

entire Grand Mesa study area. These separate snow and forest temperature images will then be used to 

train empirical downscaling models with either VSWIR or land surface properties (as in the first method), 

or with higher spatial resolution surface temperature maps (as in the second method). 
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5. Research Timeline 

Milestone Date 

General Examination November 8, 2021 

Submit Ch. 1 paper to RSE Fall Qtr. 2021 

AGU presentation on Ch. 1 December 14, 2021 

Submit Ch. 2 paper Spring 2022 

Conference presentation on Ch. 2 Summer or Fall Qtr. 2022 

Submit Ch. 3 paper Winter or Spring Qtr. 2023 

Final Examination Spring Qtr. 2023 

Graduation Spring Qtr. 2023 
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